1
0
mirror of https://github.com/privacyguides/i18n.git synced 2025-08-23 06:59:18 +00:00

New Crowdin translations by GitHub Action

This commit is contained in:
Crowdin Bot
2024-04-03 13:32:31 +00:00
parent d1f19023da
commit fbbc9016e5
87 changed files with 203 additions and 232 deletions

View File

@@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Điều này không bao gồm mã của bên thứ ba được nhúng trong kho lưu trữ này hoặc mã mà giấy phép thay thế được ghi chú khác. Sau đây là những ví dụ đáng chú ý, nhưng danh sách này có thể không bao gồm tất cả:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Điều này có nghĩa là bạn có thể sử dụng nội dung có thể đọc được của con người trong kho lưu trữ này cho dự án của riêng bạn, theo các điều khoản được nêu trong văn bản CC0 1.0 Universal. Bạn **không được** sử dụng thương hiệu Privacy Guides trong dự án của riêng bạn mà không có sự chấp thuận rõ ràng từ dự án này. Nhãn hiệu thương hiệu của Privacy Guides bao gồm nhãn hiệu chữ "Privacy Guides" và logo shield. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@@ -203,7 +203,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## Ứng dụng chung

View File

@@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.