1
0
mirror of https://github.com/privacyguides/i18n.git synced 2025-06-16 07:51:13 +00:00

New Crowdin translations by GitHub Action

This commit is contained in:
Crowdin Bot 2024-04-03 13:32:31 +00:00
parent d1f19023da
commit fbbc9016e5
87 changed files with 203 additions and 232 deletions

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Sofern nicht anders angegeben, wird der gesamte **Inhalt** dieser Webseite unter
Dies gilt nicht für den in diesem Repository eingebetteten Code von Drittanbietern oder für Code, für den eine abweichende Lizenz angegeben ist. Die folgenden Beispiele sind erwähnenswert, aber diese Liste ist nicht allumfassend:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) unterliegt der [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* Die [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) Schriftart für Überschriften ist lizenziert unter der [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Salvo que se indique lo contrario, todo el **contenido** de este sitio web está
Esto no incluye código de terceros incrustado en este repositorio, o código en el que se indique una licencia sustitutiva. Los siguientes son ejemplos notables, pero esta lista puede no ser exhaustiva:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) tiene licencia [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* La fuente de encabezado [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) está autorizada bajo la licencia [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* La fuente [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) utilizada para la mayor parte del texto del sitio tiene licencia según los términos detallados [aquí ](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* La fuente [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) utilizada para el texto monoespaciado en el sitio web está autorizada bajo la licencia [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Esto significa que puedes utilizar el contenido legible por humanos de este repositorio para tu propio proyecto, de acuerdo con los términos descritos en el texto de Creative Commons Attribution-NoDerivatives 4.0 International Public License. A pesar de que le está permitido, bajo ningún concepto se dará a entender por ello que el propietario de la licencia aprueba los cambios ni su uso. Tú **no puedes** utilizar la marca de Privacy Guides en tu propio proyecto sin la aprobación expresa de este proyecto. Las marcas comerciales de Privacy Guides incluyen el logotipo de "Privacy Guides" y el logotipo del escudo.

View File

@ -201,7 +201,7 @@ Algunos consejos más para comprar un Google Pixel:
- Si buscas una ganga en un dispositivo Pixel, te sugerimos comprar un modelo "**a**", justo después del lanzamiento del modelo más nuevo. Los descuentos suelen estar disponibles porque Google intentará liquidar sus existencias.
- Considera la posibilidad de batir los precios y las ofertas especiales de las tiendas físicas.
- Busca en los sitios de ofertas de la comunidad en línea de tu país. Estos pueden alertarle de buenas ventas.
- Google proporciona una lista que muestra el [ciclo de soporte](https://support.google.com/nexus/answer/4457705) para cada uno de sus dispositivos. El precio por día de un dispositivo puede calcularse como: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, lo que significa que cuanto mayor sea el uso del dispositivo, menor será el coste por día.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- Si el Pixel no está disponible en tu región, el [NitroPhone](https://shop.nitrokey.com/shop) puede enviarse a nivel mundial.
## Aplicaciones generales

View File

@ -82,11 +82,11 @@ Te recomendamos que utilices la [EFF large wordlist](https://eff.org/files/2016/
Para demostrar lo fuertes que son las frases de contraseña diceware, utilizaremos la frase de contraseña de siete palabras antes mencionada (`viewable fastness reluctant squishy seventeen shown pencil`) y [EFF large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) como ejemplo.
Una métrica para determinar la fuerza de una frase de contraseña diceware es cuánta entropía tiene. La entropía por palabra en una frase de contraseña diceware se calcula como $\text{log}_2(\text{WordsInList})$ y la entropía global de la frase de contraseña se calcula como $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Por lo tanto, cada palabra de la lista mencionada da como resultado ~12,9 bits de entropía ($\text{log}_2(7776)$), y una frase de contraseña de siete palabras derivada de ella tiene ~90,47 bits de entropía ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
La [EFF large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contiene 7776 palabras únicas. Para calcular la cantidad de frases de contraseña posibles, todo lo que tenemos que hacer es $\text{WordsInList}^\text{WordsInPhrase}$, o en nuestro caso, $7776^7$.
La [EFF large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contiene 7776 palabras únicas. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Pongamos todo esto en perspectiva: Una frase de siete palabras utilizando la [EFF large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) es una de las ~1.719.070.799.748.422.500.000.000.000 frases posibles.

View File

@ -24,10 +24,9 @@ The following is a human-readable summary of (and not a substitute for) the [lic
این شامل کدهای شخص ثالثی که در این مخزن جاسازی شده است یا کدهایی که مجوز جایگزین دیگری در آنها ذکر شده است، نمی‌شود. موارد زیر نمونه‌های قابل توجه هستند، اما این لیست ممکن است کامل نباشد:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
این بدان معناست که شما می‌توانید از محتوای قابل فهم بشری در این مخزن برای پروژه خود استفاده کنید، طبق شرایطی که در متن مجوز عمومی Creative Commons Attribution-NoDerivatives 4.0 International Public License تعیین شده است. شما می‌توانید این کار را به هر نحو منصفانه‌ای انجام دهید، اما نباید به هر نحوی که به نظر برسد Privacy Guides شما یا استفاده شما را تأیید می‌کند. شما **نمی‌توانید** از برندینگ Privacy Guides در پروژه خود استفاده کنید مگر با تأیید صریح از این پروژه. علامت تجاری برند Privacy Guides شامل عبارت "Privacy Guides" به همراه لوگوی سپر می‌باشد.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Sauf indication contraire, l'ensemble du **contenu** de ce site web est mis à d
Cela n'inclut pas le code tiers intégré dans ce dépôt, ou le code pour lequel une licence de remplacement est indiquée. Les exemples suivants sont notables, mais cette liste n'est pas exhaustive :
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) est sous licence [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* La police d'en-tête [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) est placée sous la licence [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* La police [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) utilisée pour la plupart des textes sur le site est sous licence selon les termes détaillés [ici](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* La police [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) utilisée pour le texte monospace sur le site est sous licence [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Cela signifie que vous pouvez utiliser le contenu lisible par l'homme de ce dépôt pour votre propre projet, conformément aux conditions décrites dans le texte de la license publique Creative Commons Attribution - Pas de Modification 4.0 International. Vous pouvez le faire de toute manière raisonnable, mais pas d'une manière qui suggère que Privacy Guides vous approuve ou approuve votre utilisation. Vous **ne pouvez pas** utiliser la marque Privacy Guides dans votre propre projet sans l'approbation expresse de ce projet. Les marques déposées de Privacy Guides comprennent l'appellation "Privacy Guides" ainsi que le logo de bouclier.

View File

@ -201,7 +201,7 @@ Quelques conseils supplémentaires pour l'achat d'un Google Pixel :
- Si vous cherchez une bonne affaire pour un appareil Pixel, nous vous suggérons d'acheter un modèle "**a**", juste après la sortie du prochain produit phare de la marque. Des remises sont généralement disponibles parce que Google essaie d'écouler son stock.
- Tenez compte des offres spéciales et réductions proposées par les magasins en dur.
- Consultez les sites communautaires de bonnes affaires en ligne dans votre pays. Ils peuvent vous alerter lors de bonnes ventes.
- Google fournit une liste indiquant le [cycle de support](https://support.google.com/nexus/answer/4457705) pour chacun de ses appareils. Le prix par jour d'un appareil peut être calculé comme suit : $\text{Coût} \over \text {Date fin de vie}-\text{Date du jour}$, ce qui signifie que plus l'utilisation de l'appareil est longue, plus le coût par jour est faible.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- Si le pixel n'est pas disponible dans votre région, le [NitroPhone](https://shop.nitrokey.com/shop) peut être expédié dans le monde entier.
## Applications générales

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
L'une des mesures permettant de déterminer la force d'une phrase secrète est son degré d'entropie. L'entropie par mot dans une phrase secrète est calculée comme suit : $\text{log}_2(\text{WordsInList})$ et l'entropie globale de la phrase secrète est calculée comme suit : $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Par conséquent, chaque mot de la liste susmentionnée génère ~12,9 bits d'entropie ($\text{log}_2(7776)$), et une phrase secrète de sept mots dérivée de cette liste a ~90,47 bits d'entropie ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. Pour calculer le nombre de phrases secrètes possibles, il suffit de faire $\text{WordsInList}^\text{WordsInPhrase}$, ou dans notre cas, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Privacy Guides בנוסף אינם מתחייבים כי אתר זה יהיה ז
זה לא כולל קוד של צד שלישי המוטמע במאגר זה, או קוד שבו צוין אחרת רישיון מחליף. להלן דוגמאות בולטות, אך ייתכן שרשימה זו אינה כוללת:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) מורשה תחת רישיון [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* גופן הכותרת של [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) מורשה תחת רישיון [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* הגופן [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) המשמש לרוב הטקסט באתר הינו מורשה בתנאים המפורטים [כאן](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* הגופן [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) המשמש עבור טקסט מונו-רווח באתר הוא מורשה תחת [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
משמעות הדבר היא שאתה יכול להשתמש בתוכן הניתן לקריאה על ידי אדם במאגר זה עבור הפרויקט שלך, לפי התנאים המפורטים בטקסט של Creative Commons Attribution-NoDerivatives 4.0 International Public License. אתה רשאי לעשות זאת בכל דרך סבירה, אך לא בכל דרך שמציעה שPrivacy Guides מאשרים אותך או את השימוש שלך. **אינך רשאי** להשתמש במיתוג Privacy Guides בפרויקט שלך ללא אישור מפורש מפרויקט זה. סימני המסחר של המותג של מדריכי הפרטיות כוללים את סימן המילה "Privacy Guides" ואת לוגו המגן.

View File

@ -201,7 +201,7 @@ DivestOS משתמשת ב-F-Droid כחנות האפליקציות המוגדרת
- אם אתה מחפש מציאה על מכשיר פיקסל, אנו מציעים לקנות דגם "**a**", מיד לאחר יציאת ספינת הדגל הבאה. הנחות זמינות בדרך כלל מכיוון שגוגל תנסה לסלק את המלאי שלה.
- שקול אפשרויות מכות מחיר ומבצעים המוצעים בחנויות פיזיות.
- עיין באתרי עסקאות אןנליין של קהילתיות במדינה שלך. אלה יכולים להתריע על מכירות טובות.
- Google מספקת רשימה המציגה את [מחזור התמיכה](https://support.google.com/nexus/answer/4457705) עבור כל אחד מהמכשירים שלהם. ניתן לחשב את המחיר ליום עבור מכשיר כך: $\text{עלות} \מעל \text {תאריך EOL}-\text{תאריך נוכחי}$, כלומר ככל שהשימוש ארוך יותר במכשיר כך העלות ליום נמוכה יותר.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## אפליקציות כלליות

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
מדד אחד לקביעת עוצמתו של משפט סיסמא של קוביות הוא כמה אנטרופיה יש לו. האנטרופיה למילה בביטוי סיסמה של תוכנת קוביות מחושבת כnd the overall entropy of the passphrase is calculated as -$\text{log}_2(\text{WordsInList})$והאנטרופיה הכוללת של ביטוי הסיסמה מחושבת כ - $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
לכן, כל מילה ברשימה הנ"ל מביאה ל-~12.9 סיביות של אנטרופיה ($\text{log}_2(7776)$), ולביטוי סיסמה של שבע מילים שנגזר ממנו יש ~90.47 סיביות של אנטרופיה($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. כדי לחשב את כמות ביטויי הסיסמה האפשריים, כל שעלינו לעשות הוא $\text{WordsInList}^\text{WordsInPhrase}$, או במקרה שלנו, $ 7776^7 $.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Ez nem vonatkozik az ebbe az adattárba beágyazott, harmadik féltől származó kódra, illetve azokra a kódokra, amelyeknél a helyettesítő licenc másként van feltüntetve. Az alábbi példák figyelemre méltóak, de ez a lista nem feltétlenül teljes:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Ez azt jelenti, hogy az ebben a adattárban található, ember által olvasható tartalmat felhasználhatod saját projektedhez, a Creative Commons Attribution-NoDerivatives 4.0 International Public License szövegben foglalt feltételei szerint. Te **nem** használhatod a Privacy Guides márkajelzéseit saját projektedben ennek a projektnek a kifejezett jóváhagyása nélkül. Te **nem** használhatod a Privacy Guides márkajelzéseit saját projektedben ennek a projektnek a kifejezett jóváhagyása nélkül. A Privacy Guides márkavédjegyei közé tartozik a "Privacy Guides" szóvédjegy és a pajzs logó.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Ini tidak termasuk kode pihak ketiga yang tertanam dalam repositori ini, atau kode di mana lisensi pengganti dinyatakan. Berikut ini adalah contoh penting, tetapi daftar ini mungkin tidak mencakup semuanya:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Ini berarti bahwa Anda dapat menggunakan konten yang dapat dibaca manusia dalam repositori ini untuk proyek Anda sendiri, sesuai dengan persyaratan yang diuraikan dalam teks Creative Commons Atribusi-TanpaTurunan 4.0 Internasional. Anda dapat melakukannya dengan cara yang wajar, tetapi tidak dengan cara apa pun yang menyarankan Privacy Guides mendukung Anda atau penggunaan Anda. Anda **tidak boleh** menggunakan merek Privacy Guides dalam proyek Anda sendiri tanpa persetujuan tertulis dari proyek ini. Merek dagang merek Privacy Guides mencakup tanda kata "Privacy Guides" dan logo perisai.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Se non indicato diversamente, tutti i **contenuti** su questo sito web sono resi
Ciò non include il codice di terze parti incorporato in questo repository, o il codice in cui è altrimenti indicata una licenza sostitutiva. I seguenti sono degli esempi notevoli, ma questo elenco potrebbe non essere omnicomprensivo:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) è concesso sotto la [ Licenza Apache 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* Il font delle intestazioni [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard), è concesso sotto la [Licenza SIL Open Font 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* Il font [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans), utilizzato per gran parte dei testi sul sito, è concesso sotto i termini [qui](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt) dettagliati.
* Il font [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) utilizzato per il testo monospaziato sul sito, è concesso sotto la [Licenza SIL Open Font 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Ciò significa che puoi utilizzare i contenuti leggibili dall'uomo in questo repository per il tuo progetto, secondo i termini delineati nel testo della Licenza Pubblica Internazionale Creative Commons Attribution-NoDerivatives 4.0. Puoi farlo in qualsiasi modo ragionevole, ma non in alcun modo che suggerisca che Privacy Guides promuova te o il tuo utilizzo. **Non puoi** utilizzare i marchi di Privacy Guides nel tuo progetto, senza l'espressa approvazione da parte di questo progetto. I marchi registrati di Privacy Guides includono il marchio "Privacy Guides" e il logo dello scudo.

View File

@ -201,7 +201,7 @@ Altri suggerimenti per l'acquisto di un Google Pixel:
- Se vuoi fare un affare con un dispositivo Pixel, ti consigliamo di acquistare un modello "**A**", poco dopo l'uscita del modello top di gamma successivo. Solitamente, gli sconti, sono disponibili perché Google cercerà di smaltire le scorte.
- Considera le opzioni di sconto e offerte speciali, nei negozi fisici.
- Consulta le community di sconti online nel tuo paese. Possono segnalarti le vendite più convenienti.
- Google fornisce un elenco che mostra il [ciclo di supporto](https://support.google.com/nexus/answer/4457705) per ognuno dei propri dispositivi. Il prezzo giornaliero di un dispositivo è calcolabile come: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, a significare che maggiore è l'utilizzo del dispositivo, minore è il costo giornaliero.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- Se il Pixel non è disponibile nella tua regione, il [NitroPhone](https://shop.nitrokey.com/shop) può essere spedito a livello globale.
## App generali

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
Un parametro per determinare la forza di una passphrase diceware è la sua entropia. L'entropia per parola in una frase segreta Diceware è calcolata come $\text{log}_2(\text{WordsInList})$ e l'entropia complessiva della frase segreta è calcolata come $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Dunque, ogni parola nell'elenco suddetto risulta in circa 12,9 bit di entropia ($\text{log}_2(7776)$), e una frase segreta di sette parole da esso derivaata contiene circa 90,47 bit di entropia ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. Per calcolare la quantità di frasi segrete possibili, tutto ciò che dobbiamo fare è $\text{WordsInList}^\text{WordsInPhrase}$ o, nel nostro caso, $ 7776^7 $.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ The installation of GrapheneOS on a Pixel phone is easy with their [web installe
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## 一般的なアプリ

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Privacy Guides is an open-source project contributed to under licenses that incl
저장소에 포함된 제3자 코드나 대체 라이선스가 별도 명시된 코드는 이에 포함되지 않습니다. 다음은 주요 예시이나, 여기에 나열되지 않은 사례가 있을 수 있습니다:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js)는 [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt)에 따라 라이선스가 부여됩니다.
* [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) 제목 폰트는 [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt)에 따라 라이선스가 부여됩니다.
* [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) 본문 폰트는 [자세히 설명된 조항](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt)에 따라 라이선스가 부여됩니다.
* [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) 고정폭 폰트는 [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt)에 따라 라이선스가 부여됩니다.
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
즉, 저장소 내용 중 사람이 읽을 수 있는 콘텐츠는 크리에이티브 커먼즈 저작자표시-변경금지 4.0 국제 공공 라이선스 텍스트에 명시된 조항에 따라 자신의 프로젝트에 사용할 수 있습니다. 단, 여러분은 라이선스를 중시하는 선에서 자유롭게 이용할 수 있지만 Privacy Guides가 여러분의 행위나 여러분 개인을 직접 보증/지지하는 듯이 표현해서는 안 됩니다. 여러분은 본 프로젝트에서 명시적으로 승인하지 않는 한 자신의 프로젝트에서 Privacy Guides 상표를 사용할 수 **없습니다**. Privacy Guides 브랜드 상표에는 'Privacy Guides' 로고타입과 방패 로고가 포함됩니다.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## 일반 앱

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
다이스웨어 패스프레이즈 강도를 결정하는 지표 한 가지는 엔트로피의 크기입니다. 다이스웨어 패스프레이즈의 단어당 엔트로피는 $\text{log}_2(\text{WordsInList})$, 전체 패스프레이즈 엔트로피는 $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$로 계산됩니다.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
따라서, 앞서 언급한 목록 내 각 단어는 ~12.9비트 엔트로피($\text{log}_2(7776)$)를, 7 단어 패스프레이즈는 ~90.47비트 엔트로피($\text{log}_2(7776^7)$)를 갖습니다.
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. 만들어질 수 있는 패스프레이즈의 양을 계산하면 $\text{WordsInList}^\text{WordsInPhrase}$, 즉 $7776^7$입니다.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Tenzij anders vermeld, wordt alle **inhoud** op deze website beschikbaar gesteld
Dit geldt niet voor code van derden die in dit archief is opgenomen, of code waar een vervangende licentie anderszins is aangegeven. Hieronder volgen enkele belangrijke voorbeelden, maar deze lijst is wellicht niet volledig:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is gelicenseerd onder de [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* Het [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is gelicenseerd onder de [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* Het lettertype [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) dat voor de meeste tekst op de site wordt gebruikt, heeft een licentie onder de hier beschreven voorwaarden [](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* Het lettertype [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) dat gebruikt wordt voor de tekst in monospaced letters op de site is gelicenseerd onder de [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Dit betekent dat je de menselijk leesbare inhoud in deze repository kunt gebruiken voor je eigen project, volgens de voorwaarden in de CC0 1.0 Universele tekst. U **mag de Privacy Guides branding niet** gebruiken in uw eigen project zonder uitdrukkelijke toestemming van dit project. De handelsmerken van Privacy Guides omvatten het woordmerk "Privacy Guides" en het schildlogo. De handelsmerken van Privacy Guides omvatten het woordmerk "Privacy Guides" en het schildlogo.

View File

@ -201,7 +201,7 @@ Nog een paar tips voor de aanschaf van een Google Pixel:
- Als je op zoek bent naar een koopje voor een Pixel-toestel, raden wij je aan een "**a**"-model te kopen, net nadat het volgende vlaggenschip is uitgebracht. Kortingen zijn meestal beschikbaar omdat Google zal proberen om hun voorraad op te ruimen.
- Overweeg de mogelijkheden om de prijzen te verlagen en de speciale aanbiedingen van de fysieke winkels.
- Kijk naar online naar de koopjes sites in jouw land. Deze kunnen je waarschuwen voor goede uitverkopen.
- Google geeft een lijst met de [ondersteuningscyclus](https://support.google.com/nexus/answer/4457705) voor elk van hun toestellen. De prijs per dag voor een apparaat kan worden berekend als: $\text{Kosten} \over \text {Datum einde levensduur}-\text{Huidige datum}$, wat betekent dat hoe langer het apparaat wordt gebruikt, hoe lager de kosten per dag zijn.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## Algemene toepassingen

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
Eén meting om de sterkte van een wachtwoord zin te bepalen is hoeveel entropie het heeft. De entropie per woord in een diceware wachtwoord zin wordt berekend als $\text{log}_2(\text{WordsInList})$ en de totale entropie van de wachtwoord zin wordt berekend als $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Daarom resulteert elk woord in de bovengenoemde lijst in ~12,9 bits entropie ($\text{log}_2(7776)$), en een daarvan afgeleide wachtwoord zin van zeven woorden heeft ~90,47 bits entropie ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. Om het aantal mogelijke passphrases te berekenen, hoeven we alleen maar $\text{WordsInList}^\text{WordsInPhrase}$, of in ons geval, $7776^7$, uit te rekenen.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Nie dotyczy to kodu z zewnętrznych źródeł osadzonego w tym repozytorium lub kodu, w którym określono inną licencję zastępczą. Poniżej przedstawiono warte uwagi przykłady, ale ta lista może nie być wyczerpująca:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. Znaki towarowe marki Privacy Guides obejmują znak słowny "Privacy Guides" oraz logo tarczy. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Isto não inclui o código de terceiros incorporado neste repositório, ou código onde uma licença de substituição é de outro modo anotada. Os exemplos seguintes são notáveis, mas esta lista pode não incluir tudo:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Isso significa que você pode utilizar o conteúdo legível por humanos neste repositório para o seu próprio projeto, nos termos descritos no texto da licença Creative Commons Attribution-NoDerivatives 4.0 International Public License. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Salvo indicação em contrário, todo o conteúdo **** deste site é disponibili
Isto não inclui código de terceiros incorporado neste repositório, ou código onde seja referida uma licença substituta. Os exemplos a seguir são relevantes, mas podem não conter tudo:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) está licenciado ao abrigo da [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* O tipo de letra de cabeçalho [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) é licenciado ao abrigo da [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* O tipo de letra [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans), utilizado na maior parte do texto do site, está licenciado ao abrigo dos termos detalhados [aqui](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* O tipo de letra [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono), usada para texto de espaço fixo, é licenciado ao abrigo da [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Isto significa que pode utilizar o conteúdo legível por humanos neste repositório para o seu próprio projeto, de acordo com os termos descritos no texto da Licença Pública Internacional Creative Commons Attribution-NoDerivatives 4.0. Pode fazê-lo com alguma contenção, de forma a não dar a entender que o Privacy Guides o apoia ou apoia as suas ações. **Não poderá** utilizar a marca Privacy Guides no seu próprio projeto, sem a aprovação expressa do projeto. As marcas registadas do Privacy Guides incluem a marca nominativa "Privacy Guides" e o logótipo do escudo.

View File

@ -201,7 +201,7 @@ Mais algumas dicas para comprar um Google Pixel:
- Se procura uma pechincha num dispositivo Pixel, sugerimos que compre um modelo "**a**", logo após o lançamento do próximo topo de gama. Normalmente, os descontos estão disponíveis porque a Google está a tentar liquidar o seu stock.
- Considere as opções de redução de preços e as promoções oferecidas nas lojas físicas.
- Consulte os sítios de pechinchas da comunidade em linha no seu país. Estes podem alertá-lo para boas vendas.
- A Google fornece uma lista com o [ciclo de suporte](https://support.google.com/nexus/answer/4457705) para cada um dos seus dispositivos. O preço por dia de um dispositivo pode ser calculado da seguinte forma: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, o que significa que quanto maior for o tempo de utilização do dispositivo, menor será o custo por dia.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## Aplicações Gerais

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Privacy Guides is an open-source project contributed to under licenses that incl
Это не относится к коду сторонних разработчиков, встроенному в данный репозиторий, или к коду, в котором так или иначе указана другая лицензия. Ниже приведены яркие примеры, но этот список не является исчерпывающим:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) лицензирован с помощью [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* Шрифт заголовков [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) лицензирован с помощью [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* Шрифт [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans), используемый для большинства текстов на сайте, лицензирован на условиях, подробно описанных [здесь](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* Шрифт [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono), используемый для моноширинного текста на сайте, лицензирован с помощью [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Это означает, что вы можете использовать контент из этого репозитория в личных целях на условиях, изложенных в тексте Creative Commons Attribution-NoDerivatives 4.0 International Public License. Вы можете делать это любым способом в рамках разумного, но не говорить, что Privacy Guides одобряет ваш проект или ваше использование материалов. Однако вы **не можете** использовать бренд PrivacyGuides в своем проекте без нашего специального разрешения. Торговые марки бренда PrivacyGuides включают в себя название "Privacy Guides" и логотип в виде щита.

View File

@ -201,7 +201,7 @@ Google Pixel phones use a TEE OS called Trusty which is [open source](https://so
- Если вы хотите купить устройство Pixel по выгодной цене, мы советуем приобрести модель "**a**" сразу после выхода следующего флагмана. Скидки обычно предоставляются потому, что Google пытается очистить свои запасы.
- Рассмотрите варианты снижения цены и специальные предложения, предлагаемые в физических магазинах.
- Просмотрите сайты общественных онлайн-сделок в вашей стране. Они могут предупредить вас о хороших распродажах.
- Google предоставляет список с указанием [цикла поддержки](https://support.google.com/nexus/answer/4457705?hl=ru&sjid=8188849062388690554-EU#zippy=) для каждого из своих устройств. Стоимость одного дня использования устройства может быть рассчитана как: $\text{Цена} \over \text {Дата окончания поддержки}-\text{Текущая дата}$, что означает, что чем дольше используется устройство, тем ниже стоимость одного дня.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## Основные приложения

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
Одним из показателей для определения силы парольной фразы является ее энтропия. Энтропия каждого слова в парольной фразе вычисляется как $\text{log}_2(\text{Слов-в-списке})$, а общая энтропия парольной фразы вычисляется как $\text{log}_2(\text{Слов-в-списке}^\text{Слов-в-фразе})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Таким образом, каждое слово в вышеупомянутом списке дает ~12,9 бит энтропии ($\text{log}_2(7776)$), а парольная фраза из семи слов имеет ~90,47 бит энтропии ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. Чтобы вычислить количество возможных парольных фраз, достаточно $\text{Слов-в-списке}^\text{Слов-в-фразе}$, или, в нашем случае, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
This does not include third-party code embedded in this repository, or code where a superseding license is otherwise noted. The following are notable examples, but this list may not be all-inclusive:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. You **may not** use the Privacy Guides branding in your own project without express approval from this project. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Bu, yerini alan bir lisansın aksi belirtildiği bu depoya veya koda yerleştirilmiş üçüncü taraf kodu içermez. Aşağıdakiler dikkate değer örneklerdir, ancak bu liste her şey dahil olmayabilir:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Bu, Creative Commons Attribution-Noderivatives 4.0 International Public License metninde belirtilen şartlara göre, bu depodaki insan tarafından okunabilir içeriği kendi projeniz için kullanabileceğiniz anlamına gelir. Bunu herhangi bir makul bir şekilde yapabilirsiniz, ancak Gizlilik Kılavuzları (Privacy Guides) sizi veya kullanımınızı onayladığı hiçbir şekilde değil. Gizlilik Kılavuzları (Privacy Guides) markasını bu projeden açık bir onay almadan kendi projenizde **kullanamazsınız**. Gizlilik Kılavuzları'nın (Privacy Guides) marka ticari markaları arasında "Gizlilik Kılavuzları (Privacy Guides)" kelime işaretleri ve zırh (shield) logosu yer alıyor.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Це не включає сторонній код, вбудований в цей репозиторій, або код, де ліцензія, що замінює ліцензію, відмічена іншим чином. Нижче наведені відомі приклади, але цей список може бути неповним:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Це означає, що ви можете використовувати читабельний вміст в цьому репозиторії для вашого власного проєкту відповідно до умов, викладених в універсальному тексті CC0 1.0. Ви **не маєте права** використовувати брендинг Privacy Guides у своєму власному проєкті без прямого схвалення цього проєкту. Торгові марки бернду Privacy Guides включають в себе логотип та "Privacy Guides". Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
Одним із показників для визначення сили парольної фрази є її ентропія. Ентропія кожного слова у фразі обчислюється як $\text{log}_2(\text{WordsInList})$, а загальна ентропія фрази обчислюється як $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Отже, кожне слово у вищезгаданому списку дає ~12.9 біт ентропії ($\text{log}_2(7776)$), а похідна від нього фраза з семи слів має ~90.47 біт ентропії ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. Щоб підрахувати кількість можливих ключових фраз, все, що нам потрібно зробити, це $\text{WordsInList}^\text{WordsInPhrase}$, або у нашому випадку, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Điều này không bao gồm mã của bên thứ ba được nhúng trong kho lưu trữ này hoặc mã mà giấy phép thay thế được ghi chú khác. Sau đây là những ví dụ đáng chú ý, nhưng danh sách này có thể không bao gồm tất cả:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
Điều này có nghĩa là bạn có thể sử dụng nội dung có thể đọc được của con người trong kho lưu trữ này cho dự án của riêng bạn, theo các điều khoản được nêu trong văn bản CC0 1.0 Universal. Bạn **không được** sử dụng thương hiệu Privacy Guides trong dự án của riêng bạn mà không có sự chấp thuận rõ ràng từ dự án này. Nhãn hiệu thương hiệu của Privacy Guides bao gồm nhãn hiệu chữ "Privacy Guides" và logo shield. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@ -203,7 +203,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## Ứng dụng chung

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.

View File

@ -24,10 +24,9 @@ Privacy Guides 是一個開放原始碼專案,貢獻有授權保護,包括
這不包括嵌入在此儲存庫中的第三方代碼,或以其他方式注明取代許可證的代碼。 以下是引人注目的例子,但此列表可能不包括所有:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) 是根據 [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt)授權的。
* 網站標題字使用 [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) 字體,請使用許可依照 [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt)。
* 本站文字大量使用[Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans)字體,其版權條款請見[此處](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt)。
* 網站上用於等間距文字的 [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) 字體是根據 [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt)授權的。
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
這意味著您可以根據 Creative Commons Attribution-NoDerivatives 4.0 國際公共許可證文本中概述的條款,將此存儲庫中的人類可讀內容用於自己的項目。 您可以依合理的方式這樣做,但不能以任何方式暗示 Privacy Guides 認可您或您的使用。 未經本專案明確同意,**不得**在任何專案中使用 Privacy Guides 品牌。 Privacy Guides 品牌商標包括 "Privacy Guides" 文字商標和盾牌標誌。

View File

@ -201,7 +201,7 @@ Pixel 手機很容易安裝 GrapheneOS 只需依其 [網頁安裝程式](https:/
- 如果想買便宜的 Pixel 設備,建議購買"**a**"型號,其為旗艦機發布後的預算款。 通常會有折扣,因為 Google 會出清庫存。
- 考慮在實體商店提供折扣與特價的商品。
- 找找國內線上折扣社區的網站。 這些可提醒有好的商品。
- Google 提供一份其設備 [支援週期](https://support.google.com/nexus/answer/4457705)的列表清單。 設備每日價格可以計算為: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$,意味著設備使用時間越長,每天的費用越低。
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- 如果你的地區無法購得 Pixel [NitroPhone](https://shop.nitrokey.com/shop) 可提供全球配送。
## 一般應用

View File

@ -82,11 +82,11 @@ Diceware 是一種創建密碼短語的方法,這些密短口令易於記憶
為了證明 diceware 密語的強度,我們將使用前面提到的七個單詞密語(`viewable fastness reluctant squishy seventeen shown pencil`)和 [EFF 的大型單詞列表](https://eff.org/files/2016/07/18/eff_large_wordlist.txt)作例子。
判斷 diceware 口令密語強度的衡量標準是確定它有多少熵。 Diceware 口令密語中的個別單詞的熵為 $\text{log}_2(\text{WordsInList})$ 而整組密語的熵總量為 $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase}).
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
因此,上述列表中的每個單詞都會產生~ 12.9 位熵(($\text{log}_2 (7776) $) ,而其中取得七個單詞組成的口令密語就具有~ 90.47位熵 ($\text{log}_2 (7776 ^ 7) $ )。
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
[EFF 的大型單字清單](https://eff.org/files/2016/07/18/eff_large_wordlist.txt)包含 7776 個獨特單字。 要計算可能的口令密語數量,所要做的就是 $\text{WordsInList}^\text{WordsInPhrase}$ ,或者依我們的情況, $ 7776 ^ 7 $。
[EFF 的大型單字清單](https://eff.org/files/2016/07/18/eff_large_wordlist.txt)包含 7776 個獨特單字。 To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
讓我們從這個角度來看:使用 \[EFF 的大型單詞列表\](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) 的七個單詞的口令密短大約有1,719,070,799,748,422,500,000,000 種組合。

View File

@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
这不包括嵌入此存储库的第三方代码,也不包括其他标注了替代许可证的代码。 以下是一些值得注意的例子,但这一清单可能不包括所有方面:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
这意味着您可以根据Creative Commons Attribution-NoDerivatives 4.0国际公共许可证文本中列出的条款,将此存储库中的可读内容用于您自己的项目。 您可以以任何合理的方式这样做,但不得以任何方式暗示隐私指南认可您或您的使用。 **未经本项目的明确批准,您 **,不得在您自己的项目中使用隐私指南的品牌。 隐私指南的品牌商标包括“隐私指南”字样和盾形标志。

View File

@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## 常规应用程序

View File

@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
确定双关口令强度的一个指标是它的熵值有多少。 双关口令中每个字的熵计算为$\text{log}_2(\text{WordsInList})$,口令的整体熵计算为$\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$。
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
因此,上述列表中的每个词都会产生~12.9比特的熵($\text{log}_2(7776)$),而由它衍生出的七个词的口令有~90.47比特的熵($\text{log}_2(7776^7)$)。
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. 要计算可能的口令数量,我们所要做的就是$\text{WordsInList}^\text{WordsInPhrase}$,或者在我们的例子中,$7776^7$。
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.