mirror of
https://github.com/privacyguides/i18n.git
synced 2025-09-07 05:48:46 +00:00
New Crowdin translations by GitHub Action
This commit is contained in:
@@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
|
||||
|
||||
Bu, yerini alan bir lisansın aksi belirtildiği bu depoya veya koda yerleştirilmiş üçüncü taraf kodu içermez. Aşağıdakiler dikkate değer örneklerdir, ancak bu liste her şey dahil olmayabilir:
|
||||
|
||||
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
|
||||
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
|
||||
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
|
||||
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
|
||||
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
|
||||
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
|
||||
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
|
||||
|
||||
Bu, Creative Commons Attribution-Noderivatives 4.0 International Public License metninde belirtilen şartlara göre, bu depodaki insan tarafından okunabilir içeriği kendi projeniz için kullanabileceğiniz anlamına gelir. Bunu herhangi bir makul bir şekilde yapabilirsiniz, ancak Gizlilik Kılavuzları (Privacy Guides) sizi veya kullanımınızı onayladığı hiçbir şekilde değil. Gizlilik Kılavuzları (Privacy Guides) markasını bu projeden açık bir onay almadan kendi projenizde **kullanamazsınız**. Gizlilik Kılavuzları'nın (Privacy Guides) marka ticari markaları arasında "Gizlilik Kılavuzları (Privacy Guides)" kelime işaretleri ve zırh (shield) logosu yer alıyor.
|
||||
|
||||
|
@@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
|
||||
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
|
||||
- Consider price beating options and specials offered at physical stores.
|
||||
- Look at online community bargain sites in your country. These can alert you to good sales.
|
||||
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
|
||||
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo>−</mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
|
||||
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
|
||||
|
||||
## General Apps
|
||||
|
@@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
|
||||
|
||||
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
|
||||
|
||||
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
|
||||
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
|
||||
|
||||
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
|
||||
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
|
||||
|
||||
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
|
||||
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
|
||||
|
||||
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.
|
||||
|
||||
|
Reference in New Issue
Block a user