1
0
mirror of https://github.com/privacyguides/i18n.git synced 2025-09-03 20:08:46 +00:00

New Crowdin translations by GitHub Action

This commit is contained in:
Crowdin Bot
2024-04-03 13:32:31 +00:00
parent d1f19023da
commit fbbc9016e5
87 changed files with 203 additions and 232 deletions

View File

@@ -24,10 +24,9 @@ Unless otherwise noted, all **content** on this website is made available under
Nie dotyczy to kodu z zewnętrznych źródeł osadzonego w tym repozytorium lub kodu, w którym określono inną licencję zastępczą. Poniżej przedstawiono warte uwagi przykłady, ale ta lista może nie być wyczerpująca:
* [MathJax](https://github.com/privacyguides/privacyguides.org/blob/main/theme/assets/javascripts/mathjax.js) is licensed under the [Apache License 2.0](https://github.com/privacyguides/privacyguides.org/blob/main/docs/assets/javascripts/LICENSE.mathjax.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/main/WOFF/bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/main/WOFF/public_sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/main/WOFF/public_sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/main/WOFF/dm_mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/main/WOFF/dm_mono/LICENSE.txt).
* The [Bagnard](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard) heading font is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Bagnard/LICENSE.txt).
* The [Public Sans](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans) font used for most text on the site is licensed under the terms detailed [here](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/Public%20Sans/LICENSE.txt).
* The [DM Mono](https://github.com/privacyguides/brand/tree/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono) font used for monospaced text on the site is licensed under the [SIL Open Font License 1.1](https://github.com/privacyguides/brand/blob/67166ed8b641d8ac1837d0b75329e02ed4056704/fonts/DM%20Mono/LICENSE.txt).
This means that you can use the human-readable content in this repository for your own project, per the terms outlined in the Creative Commons Attribution-NoDerivatives 4.0 International Public License text. You may do so in any reasonable manner, but not in any way that suggests Privacy Guides endorses you or your use. Znaki towarowe marki Privacy Guides obejmują znak słowny "Privacy Guides" oraz logo tarczy. Privacy Guides's brand trademarks include the "Privacy Guides" wordmark and shield logo.

View File

@@ -201,7 +201,7 @@ A few more tips for purchasing a Google Pixel:
- If you're after a bargain on a Pixel device, we suggest buying an "**a**" model, just after the next flagship is released. Discounts are usually available because Google will be trying to clear their stock.
- Consider price beating options and specials offered at physical stores.
- Look at online community bargain sites in your country. These can alert you to good sales.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: $\text{Cost} \over \text {EOL Date}-\text{Current Date}$, meaning that the longer use of the device the lower cost per day.
- Google provides a list showing the [support cycle](https://support.google.com/nexus/answer/4457705) for each one of their devices. The price per day for a device can be calculated as: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="tml-display" style="display:inline math;"> <mfrac> <mtext>Cost</mtext> <mrow> <mtext>End of Life Date</mtext> <mo></mo> <mtext>Current Date</mtext> </mrow> </mfrac> </math> , meaning that the longer use of the device the lower cost per day.
- If the Pixel is unavailable in your region, the [NitroPhone](https://shop.nitrokey.com/shop) can be shipped globally.
## General Apps

View File

@@ -82,11 +82,11 @@ We recommend using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_l
To demonstrate how strong diceware passphrases are, we'll use the aforementioned seven word passphrase (`viewable fastness reluctant squishy seventeen shown pencil`) and [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) as an example.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as $\text{log}_2(\text{WordsInList})$ and the overall entropy of the passphrase is calculated as $\text{log}_2(\text{WordsInList}^\text{WordsInPhrase})$.
One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mtext>WordsInList</mtext> <mo form="postfix" stretchy="false">)</mo> </mrow> </math> and the overall entropy of the passphrase is calculated as: <math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ($\text{log}_2(7776)$), and a seven word passphrase derived from it has ~90.47 bits of entropy ($\text{log}_2(7776^7)$).
Therefore, each word in the aforementioned list results in ~12.9 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <mn>7776</mn> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>), and a seven word passphrase derived from it has ~90.47 bits of entropy (<math> <mrow> <msub> <mtext>log</mtext> <mn>2</mn> </msub> <mo form="prefix" stretchy="false">(</mo> <msup> <mn>7776</mn> <mn>7</mn> </msup> <mo form="postfix" stretchy="false">)</mo> </mrow> </math>).
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is $\text{WordsInList}^\text{WordsInPhrase}$, or in our case, $7776^7$.
The [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) contains 7776 unique words. To calculate the amount of possible passphrases, all we have to do is <math> <msup> <mtext>WordsInList</mtext> <mtext>WordsInPhrase</mtext> </msup> </math>, or in our case, <math><msup><mn>7776</mn><mn>7</mn></msup></math>.
Let's put all of this in perspective: A seven word passphrase using [EFF's large wordlist](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) is one of ~1,719,070,799,748,422,500,000,000,000 possible passphrases.