mirror of
https://github.com/privacyguides/i18n.git
synced 2025-06-18 16:54:21 +00:00
New Crowdin translations by GitHub Action
This commit is contained in:
@ -42,19 +42,19 @@ LLM 通常可以透過參數的數量來區分用途,對於提供給終端使
|
||||
|
||||
### 選擇模型
|
||||
|
||||
There are many permissively licensed models available to download. [Hugging Face](https://huggingface.co/models) 是一個讓您瀏覽、研究和下載常用格式模型的平台,如 [GGUF](https://huggingface.co/docs/hub/en/gguf)。 Companies that provide good open-weights models include big names like Mistral, Meta, Microsoft, and Google. However, there are also many community models and 'fine-tunes' available. As mentioned above, quantized models offer the best balance between model quality and performance for those using consumer-grade hardware.
|
||||
There are many permissively licensed models available to download. [Hugging Face](https://huggingface.co/models) 是一個讓您瀏覽、研究和下載常用格式模型的平台,如 [GGUF](https://huggingface.co/docs/hub/en/gguf)。 Companies that provide good open-weights models include big names like Mistral, Meta, Microsoft, and Google. However, there are also many community models and 'fine-tunes' available. 如上所述,量化模型為使用消費級硬體的使用者提供了模型品質與效能之間的最佳平衡。
|
||||
|
||||
To help you choose a model that fits your needs, you can look at leaderboards and benchmarks. The most widely-used leaderboard is the community-driven [LM Arena](https://lmarena.ai). Additionally, the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) focuses on the performance of open-weights models on common benchmarks like [MMLU-Pro](https://arxiv.org/abs/2406.01574). There are also specialized benchmarks which measure factors like [emotional intelligence](https://eqbench.com), ["uncensored general intelligence"](https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard), and [many others](https://www.nebuly.com/blog/llm-leaderboards).
|
||||
為了幫助您選擇適合您的模型,您可以參考排行榜和基準。 使用最廣泛的排行榜是由社群驅動的 [LM Arena](https://lmarena.ai)。 Additionally, the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) focuses on the performance of open-weights models on common benchmarks like [MMLU-Pro](https://arxiv.org/abs/2406.01574). There are also specialized benchmarks which measure factors like [emotional intelligence](https://eqbench.com), ["uncensored general intelligence"](https://huggingface.co/spaces/DontPlanToEnd/UGI-Leaderboard), and [many others](https://www.nebuly.com/blog/llm-leaderboards).
|
||||
|
||||
## AI Chat Clients
|
||||
## AI 聊天客戶端
|
||||
|
||||
| Feature | [Kobold.cpp](#koboldcpp) | [Ollama](#ollama-cli) | [Llamafile](#llamafile) |
|
||||
| 特點 | [Kobold.cpp](#koboldcpp) | [Ollama](#ollama-cli) | [Llamafile](#llamafile) |
|
||||
| -------------------- | ----------------------------------------------------------------------------- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------ |
|
||||
| GPU Support | :material-check:{ .pg-green } | :material-check:{ .pg-green } | :material-check:{ .pg-green } |
|
||||
| Image Generation | :material-check:{ .pg-green } | :material-close:{ .pg-red } | :material-close:{ .pg-red } |
|
||||
| Speech Recognition | :material-check:{ .pg-green } | :material-close:{ .pg-red } | :material-close:{ .pg-red } |
|
||||
| GPU 支援 | :material-check:{ .pg-green } | :material-check:{ .pg-green } | :material-check:{ .pg-green } |
|
||||
| 圖片生成 | :material-check:{ .pg-green } | :material-close:{ .pg-red } | :material-close:{ .pg-red } |
|
||||
| 語音辨識 | :material-check:{ .pg-green } | :material-close:{ .pg-red } | :material-close:{ .pg-red } |
|
||||
| Auto-download Models | :material-close:{ .pg-red } | :material-check:{ .pg-green } | :material-alert-outline:{ .pg-orange } Few models available |
|
||||
| Custom Parameters | :material-check:{ .pg-green } | :material-close:{ .pg-red } | :material-check:{ .pg-green } |
|
||||
| 自訂參數 | :material-check:{ .pg-green } | :material-close:{ .pg-red } | :material-check:{ .pg-green } |
|
||||
| 多平臺 | :material-check:{ .pg-green } | :material-check:{ .pg-green } | :material-alert-outline:{ .pg-orange } Size limitations on Windows |
|
||||
|
||||
### Kobold.cpp
|
||||
@ -63,7 +63,7 @@ To help you choose a model that fits your needs, you can look at leaderboards an
|
||||
|
||||
{align=right}
|
||||
|
||||
Kobold.cpp is an AI client that runs locally on your Windows, Mac, or Linux computer. It's an excellent choice if you are looking for heavy customization and tweaking, such as for role-playing purposes.
|
||||
Kobold.cpp 是一個 AI 用戶端,可在您的 Windows、Mac 或 Linux 電腦上本地執行。 如果您需要大量的客製化和調整,例如為了角色扮演的目的,這是一個絕佳的選擇。
|
||||
|
||||
In addition to supporting a large range of text models, Kobold.cpp also supports image generators such as [Stable Diffusion](https://stability.ai/stable-image) and automatic speech recognition tools such as [Whisper](https://github.com/ggerganov/whisper.cpp).
|
||||
|
||||
|
Reference in New Issue
Block a user