mirror of
https://github.com/privacyguides/i18n.git
synced 2025-06-20 17:54:21 +00:00
New Crowdin translations by GitHub Action
This commit is contained in:
@ -28,7 +28,7 @@ cover: ai-chatbots.webp
|
||||
|
||||
本地模型也相當容易運行。 只要 8GB 記憶體,就能以較低的速度運行較小的模型。 使用更強大的硬體,例如具有足夠 VRAM 的專用 GPU 或具有快速 LPDDR5X 記憶體的現代系統,可以提供最佳的體驗。
|
||||
|
||||
LLMs can usually be differentiated by the number of parameters, which can vary between 1.3B to 405B for open-source models available for end users. For example, models below 6.7B parameters are only good for basic tasks like text summaries, while models between 7B and 13B are a great compromise between quality and speed. Models with advanced reasoning capabilities are generally around 70B.
|
||||
LLM 通常可以透過參數的數量來區分用途,對於提供給終端使用者的開放原始碼模型,參數的數量通常介於 1.3B 到 405B 之間。 例如,參數低於 6.7B 的模型只適合文字摘要等基本任務,而參數介於 7B 與 13B 之間的模型則是品質與速度的絕佳折衷。 具備進階推理能力的模型一般在 70B 左右。
|
||||
|
||||
For consumer-grade hardware, it is generally recommended to use [quantized models](https://huggingface.co/docs/optimum/en/concept_guides/quantization) for the best balance between model quality and performance. Check out the table below for more precise information about the typical requirements for different sizes of quantized models.
|
||||
|
||||
|
Reference in New Issue
Block a user