From bd1bc8691c87b6cd137ac04213b9122d859a2dba Mon Sep 17 00:00:00 2001 From: Crowdin Bot Date: Wed, 27 Nov 2024 00:47:07 +0000 Subject: [PATCH] New Crowdin translations by GitHub Action --- i18n/zh-Hant/ai-chat.md | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/i18n/zh-Hant/ai-chat.md b/i18n/zh-Hant/ai-chat.md index 1aceb8c6..fafb0d1c 100644 --- a/i18n/zh-Hant/ai-chat.md +++ b/i18n/zh-Hant/ai-chat.md @@ -2,7 +2,7 @@ meta_title: 推薦的 AI 聊天:私密的 ChatGPT 替代方案 - Privacy Guides title: AI 聊天 icon: material/assistant -description: Unlike OpenAI's ChatGPT and its Big Tech competitors, these AI tools run locally so your data never leaves your desktop device. +description: 與 OpenAI 的 ChatGPT 和與其競爭的科技巨擘產品不同,這些 AI 工具可在本地執行,因此您的資料從未離開您的電腦。 cover: ai-chatbots.webp --- @@ -10,23 +10,23 @@ cover: ai-chatbots.webp - [:material-server-network: 服務提供商](basics/common-threats.md#privacy-from-service-providers){ .pg-teal } - [:material-account-cash: 監控資本主義](basics/common-threats.md#surveillance-as-a-business-model){ .pg-brown } -- [:material-close-outline: Censorship](basics/common-threats.md#avoiding-censorship){ .pg-blue-gray } +- [:material-close-outline: 審查](basics/common-threats.md#avoiding-censorship){ .pg-blue-gray } -Since the release of ChatGPT in 2022, interactions with Large Language Models (LLMs) have become increasingly common. LLMs can help us write better, understand unfamiliar subjects, or answer a wide range of questions. They can statistically predict the next word based on a vast amount of data scraped from the web. +自 2022 年 ChatGPT 發表以來,人們與 大型語言模型(LLM) 的互動變得越來越普遍。 大型語言模型 可以幫助我們寫出更好的文章;瞭解不熟悉的主題;或是回答各式各樣的問題。 They can statistically predict the next word based on a vast amount of data scraped from the web. -## Privacy Concerns About LLMs +## 大型語言模型的隱私權疑慮 -Data used to train AI models, however, includes a massive amount of publicly available data scraped from the web, which can include sensitive information like names and addresses. Cloud-based AI software often [collects your inputs](https://openai.com/policies/row-privacy-policy), meaning your chats are not private from them. This practice also introduces a risk of data breaches. Furthermore, there is a real possibility that an LLM will leak your private chat information in future conversations with other users. +訓練 AI 模型需要用到資料;然而,用於訓練 AI 模型的資料包括從網路上獲取的大量公開資料,其中可能包括姓名和地址等敏感資訊。 基於雲端的 AI 軟體通常會 [收集您輸入的資料](https://openai.com/policies/row-privacy-policy),這表示您的聊天內容對他們而言並非私密的。 這種做法也會帶來資料外洩的風險。 此外,大型語言模型 真的有可能在未來與其他使用者的對話中洩露您的私人聊天資訊。 -If you are concerned about these practices, you can either refuse to use AI, or use [truly open-source models](https://proton.me/blog/how-to-build-privacy-first-ai) which publicly release and allow you to inspect their training datasets. One such model is [OLMoE](https://allenai.org/blog/olmoe-an-open-small-and-state-of-the-art-mixture-of-experts-model-c258432d0514) made by [Ai2](https://allenai.org/open-data). +如果您擔心這些做法,您可以拒絕使用 AI,或是使用 [真正開放原始碼的模型](https://proton.me/blog/how-to-build-privacy-first-ai),這些模型會公開釋出,並允許您檢查其訓練資料集。 由 [Ai2](https://allenai.org/open-data) 所製作的 [OLMoE](https://allenai.org/blog/olmoe-an-open-small-and-state-of-the-art-mixture-of-experts-model-c258432d0514),就是這樣的一個模型。 -Alternatively, you can run AI models locally so that your data never leaves your device and is therefore never shared with third parties. As such, local models are a more private and secure alternative to cloud-based solutions and allow you to share sensitive information to the AI model without worry. +另外,您也可以在本地執行 AI 模型,這樣您的資料就不會離開您的裝置,因此也不會與第三方共用。 因此,相較於雲端解決方案;本機模型是更私密、更安全的替代方案,讓您可以放心地將敏感資訊分享給 AI 模型。 -## AI Models +## AI 模型 -### Hardware for Local AI Models +### 本地 AI 模型的硬體 -Local models are also fairly accessible. It's possible to run smaller models at lower speeds on as little as 8GB of RAM. Using more powerful hardware such as a dedicated GPU with sufficient VRAM or a modern system with fast LPDDR5X memory offers the best experience. +本地模型也相當容易運行。 只要 8GB 記憶體,就能以較低的速度運行較小的模型。 使用更強大的硬體,例如具有足夠 VRAM 的專用 GPU 或具有快速 LPDDR5X 記憶體的現代系統,可以提供最佳的體驗。 LLMs can usually be differentiated by the number of parameters, which can vary between 1.3B to 405B for open-source models available for end users. For example, models below 6.7B parameters are only good for basic tasks like text summaries, while models between 7B and 13B are a great compromise between quality and speed. Models with advanced reasoning capabilities are generally around 70B.