From 2f28ab4909d770fd75cdc214f49fddfe4b04de07 Mon Sep 17 00:00:00 2001 From: Crowdin Bot Date: Tue, 28 May 2024 04:34:57 +0000 Subject: [PATCH] New Crowdin translations by GitHub Action --- i18n/zh-Hant/basics/passwords-overview.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/i18n/zh-Hant/basics/passwords-overview.md b/i18n/zh-Hant/basics/passwords-overview.md index 69e4cb0a..e6896db5 100644 --- a/i18n/zh-Hant/basics/passwords-overview.md +++ b/i18n/zh-Hant/basics/passwords-overview.md @@ -82,11 +82,11 @@ Diceware 是一種創建密碼短語的方法,這些密短口令易於記憶 為了證明 diceware 密語的強度,我們將使用前面提到的七個單詞密語(`viewable fastness reluctant squishy seventeen shown pencil`)和 [EFF 的大型單詞列表](https://eff.org/files/2016/07/18/eff_large_wordlist.txt)作例子。 -One metric to determine the strength of a diceware passphrase is how much entropy it has. The entropy per word in a diceware passphrase is calculated as log 2 ( WordsInList ) and the overall entropy of the passphrase is calculated as: log 2 ( WordsInList WordsInPhrase ) +判斷 diceware 口令密語強度的衡量標準是確定它有多少熵。 Diceware 密碼短語中每個單字的熵計算如下 記錄(log) 2 ( WordsInList ) 密碼短語的整體熵計算如下: 記錄(log) 2 ( WordsInList WordsInPhrase ) -Therefore, each word in the aforementioned list results in ~12.9 bits of entropy ( log 2 ( 7776 ) ), and a seven word passphrase derived from it has ~90.47 bits of entropy ( log 2 ( 7776 7 ) ). +因此,上述列表中的每個單字都會產生約 12.9 位元的熵( 記錄(log) 2 ( 7776 ) ),從它衍生出的七字密碼有約 90.47 位元的熵( 記錄(log) 2 ( 7776 7 ) ). -[EFF 的大型單字清單](https://eff.org/files/2016/07/18/eff_large_wordlist.txt)包含 7776 個獨特單字。 To calculate the amount of possible passphrases, all we have to do is WordsInList WordsInPhrase , or in our case, 77767. +[EFF 的大型單字清單](https://eff.org/files/2016/07/18/eff_large_wordlist.txt)包含 7776 個獨特單字。 要計算可能的密碼短語的數量,要做的就是 WordsInList WordsInPhrase ,或者在我們的例子中, 77767. 讓我們從這個角度來看:使用 \[EFF 的大型單詞列表\](https://eff.org/files/2016/07/18/eff_large_wordlist.txt) 的七個單詞的口令密短大約有1,719,070,799,748,422,500,000,000 種組合。